

LA-UR-15-27749

Approved for public release; distribution is unlimited.

Title: PERFORMANCE, POWER, AND ENERGY OF IN-SITU AND POST-PROCESSING

VISUALIZATION

Author(s): Adhinarayanan, Vignesh

Intended for: Web

Issued: 2015-10-05

PERFORMANCE, POWER, AND ENERGY OF IN-SITU AND POST-PROCESSING VISUALIZATION A CASE STUDY IN CLIMATE SIMULATION

Vignesh Adhinarayanan Ph.D. (CS) Student, Virginia Tech GRA, CCS-7 Division, LANL

INTRODUCTION

"Supercomputers are power constrained"

- Power budget for Los Alamos county = 66 MW
- Power budget for Trinity supercomputer alone = 15 MW
- Exceeding power budget → Brownouts in Los Alamos
 - Installing and starting ASCI White believed to play a part in the rolling California brownouts in 200 I

INTRODUCTION

"Supercomputers are energy constrained"

- I MW power consumption → I million dollars per year
 - Operating cost of supercomputers comparable to the acquisition cost
 - The gap expected to narrow down in the future

WHAT DOES IT HAVE TO DO WITH THE VISUALIZATION TEAM?

POWER/ENERGY CHALLENGE

- Energy consumed for moving a bit increases as we move down the memory hierarchy
 - Off-chip transfers costs nearly 100 times as much energy as onchip transfers

Image source: J.Shalf et al., "Exascale Computing Technology Challenges", VECPAR 2010

TRADITIONAL "POST-PROCESSING" VISUALIZATION

SOLUTION: "IN-SITU" VISUALIZATION

- In-situ visualization: perform visualization alongside the simulation
 - That is, create an image representation of data at end of each iteration directly instead of writing raw data to the disk
 - The image (reduced size representation) may be written to the disk
 - May involve additional sampling strategies (spatial, temporal, etc.)

OUTLINE

- Introduction
- Objective
- Methodology
- Results
- Conclusion and Future Work

GOAL

"Study the performance, power, and energy trade-offs among traditional post-processing, modern post-processing, and in-situ visualization pipelines"

- Detailed sub-component level power measurements within a node to gain detailed insights
 - i.e., measure power consumption of CPU, memory, and disk
- Measurements at scale to understand problems unique to big supercomputers

OUTLINE

- Introduction
- Objective
- Methodology
- Results
- Conclusion and Future Work

APPLICATION

MPAS Ocean Simulation

End goal: Identify eddies in the ocean

DATA COLLECTION

DISK POWER MODEL

- I/O statistics collected from iostat
- Number of I/O operations and the amount of data written affects power consumption of the disk

PIPELINES STUDIED

Post-processing

In-situ

Traditional Post-Processing: Post-processing without any sampling

Modern Post-Processing: Post-processing with temporal sampling (write output every few iterations – here every 24 itereations)

In-situ: Produce images on the fly *and* do so only every few iterations

HARDWARE PLATFORM

CPU	2x Intel Xeon E5-2665
CPU frequency	2.4 GHz
Last-level cache	20 MB
Memory	4x 16GB DDR3-1333
Memory size	64 GB
Hard disk	Seagate 7200rpm disk
Storage size	500GB
Disk bandwidth	6.0 Gbps

Hardware configuration

OUTLINE

- Introduction
- Objective
- Methodology
- Results
- Conclusion and Future Work

RESULTS: SINGLE-NODE ENERGY COMPARISON

- In-situ consumes 4% less energy than modern post-processing
- Compared to traditional postprocessing, both pipelines consume 93% lower energy
 - Traditional post-processing no longer accepted as baseline
 - Storage limitations won't let it happen
 - True baseline somewhere between traditional and modern postprocessing

RESULTS: SINGLE-NODE ENERGY COMPARISON

POWER/ENERGY CHALLENGE

- Energy consumed for moving a bit increases as we move down the memory hierarchy
 - Off-chip transfers costs nearly 100 times as much energy as onchip transfers

Image source: J.Shalf et al., "Exascale Computing Technology Challenges", VECPAR 2010

RESULTS: SINGLE-NODE PERFORMANCE COMPARISON

- In-situ consumes 7% lower execution time than modern post-processing
 - Reduced I/O wait time
- Difference will be significant for a HPC system
 - Details later

RESULTS: SINGLE-NODE POWER COMPARISON

- In-situ consumes 3% more power than modern post-processing
 - Difficult trade-off choice
- Might not be the same for a supercomputer
 - Details later

RESULTS: SINGLE-NODE STORAGE REQUIREMENTS

- ~97.5% lower storage requirement for the in-situ pipeline
 - Implies smaller storage cluster
 - Implies lower power consumption

REDISTRIBUTING STORAGE POWER TO COMPUTE NODES

- Assuming reduced storage nodes results in 10% of total power redirected to computer nodes
 - Performance improves by up to 6% for MPAS-O
 - Data from power capping experiments with RAPL

EXPECTATIONS FOR A SUPERCOMPUTER

- Increased I/O wait time
 - Storage separated from compute by network
 - Longer execution time and corresponding increase in energy
- Additional energy consumption from data movement through the network
 - No data transfer via network cables in single-node
- Power/energy overhead for storage higher
 - Separate cluster for storage → additional CPUs, memory, cooling etc.
 - Storage sub-system shared with compute sub-system in single-node

RESULTS AT SCALE: HARDWARE PLATFORM

- Caddy supercomputer with a dedicated Lustre file system used for profiling
- Compute nodes
 - 64 nodes out of 150 nodes used in these experiments
 - Each node contains 2x Intel Xeon E5-2670 and 64 GB of RAM
 - Nominal power consumption
 - 6000 W (idle) to 20000 W (workload such as MPAS)
- Storage nodes
 - 5 nodes configured as I master + 2 MDS + 2 OSS
 - I RAID storage per MDS and OSS
 - Nominal power consumption
 - 2500W (idle) to 2800W (active)

RESULTS AT SCALE: ENERGY COMPARISON

Real measurements on Caddy

Partial measurement on Caddy and extrapolation from spec sheets

OUTLINE

- Introduction
- Objective
- Methodology
- Results
- Conclusion and Future Work

FINDINGS

- Most energy savings come from reducing system idling (i.e., from reduced I/O wait time)
- Further savings possible if we can reduced size of the storage nodes

CONCLUSION

- In-situ visualization offers the following advantages:
 - Reduced energy consumption (by reducing system idling or I/O wait time)
 - Reduced power (by using fewer storage nodes)
 - Improved performance (by reducing I/O wait time and by making more power available for compute nodes)

FUTURE DIRECTIONS

- Enhancing HPC systems
 - Flash buffers and SSDs can reduce I/O wait time
 - Downside: Introducing more components can increase power consumption
- HPC system design changes
 - Bringing storage nodes and compute nodes together
 - Similar to Memory in Processor or Processor in Memory concepts in the computer architecture community
- Runtime system changes
 - Energy proportional computing and storage
 - Putting compute nodes to sleep states during I/O
 - Putting some storage nodes to deep sleep state when bandwidth and storage requirements are lower

